

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6,6'-Dimethyl-2,2'-bipyridin-1-ium tetrachloridoaurate(III)

Marzieh Zare Dehnavi and Anita Abedi*

Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran

Correspondence e-mail: anita_abedi@yahoo.com

Received 11 June 2012; accepted 23 June 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.023; wR factor = 0.049; data-to-parameter ratio = 23.6.

In the anion of the title compound, $(C_{12}H_{13}N_2)[AuCl_4]$, the Au^{III} atom has a square-planar coordination. In the crystal, intermolecular N-H···Cl and C-H···Cl hydrogen bonds and π - π contacts between the pyridine rings [centroid-centroid distance = 3.5419 (19) Å] result in the formation of a supramolecular structure.

Related literature

For related structures, see: Abedi *et al.* (2008, 2011); Amani *et al.* (2010); Calleja *et al.* (2001); Fazaeli *et al.* (2010); Hasan *et al.* (1999); Hojjat Kashani *et al.* (2008); Johnson & Steed (1998); Kalateh *et al.* (2008); Safari *et al.* (2009); Yap *et al.* (1995); Yıldırım *et al.* (2009*a,b*); Zhang *et al.* (2006).

Experimental

Crystal data

 $\begin{array}{l} ({\rm C}_{12}{\rm H}_{13}{\rm N}_2)[{\rm AuCl}_4] \\ M_r = 524.01 \\ {\rm Monoclinic}, P2_1/n \\ a = 10.8942 \ (9) \ {\rm \AA} \\ b = 11.6784 \ (10) \ {\rm \AA} \\ c = 12.2866 \ (11) \ {\rm \AA} \\ \beta = 95.772 \ (5)^\circ \end{array}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{min} = 0.182, T_{max} = 0.227$ Z = 4Mo Kα radiation $\mu = 10.13 \text{ mm}^{-1}$ T = 100 K $0.20 \times 0.15 \times 0.15 \text{ mm}$

V = 1555.3 (2) Å³

12293 measured reflections 4101 independent reflections 3699 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.032$ Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.049$ S = 1.004101 reflections 174 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.83$ e Å⁻³ $\Delta \rho_{min} = -1.15$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2N\cdots Cl3^{i}$	0.82	2.80	3.419 (2)	134
$C4-H4A\cdots Cl2^{ii}$	0.95	2.79	3.434 (4)	126

Symmetry codes: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x, y - 1, z - 1.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXTL*.

We thank the Iranian National Science and Research Foundation (grant No. 89002417) and the Islamic Azad University, North Tehran Branch, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2560).

References

- Abedi, A., Bahrami Shabestari, A. & Amani, V. (2008). *Acta Cryst.* E64, 0990. Abedi, A., Dabbaghi, A. & Amani, V. (2011). *Acta Cryst.* E67, m1375–m1376. Amani, V., Safari, N. & Khavasi, H. R. (2010). *Acta Cryst.* E66, m345.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Calleja, M., Johnson, K., Belcher, W. J. & Steed, W. (2001). *Inorg. Chem.* 40, 4978–4985.
- Fazaeli, Y., Amani, V., Amini, M. M. & Khavasi, H. R. (2010). Acta Cryst. E66, m212.
- Hasan, M., Kozhevnikov, I. V., Siddiqu, M. R. H., Steiner, A. & Winterton, N. (1999). *Inorg. Chem.* **38**, 5637–5641.
- Hojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m840-m841.

Johnson, K. & Steed, J. W. (1998). Chem. Commun. pp. 1479-1480.

- Kalateh, K., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1267-m1268.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Safari, N., Amani, V., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m344.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yap, G. P. A., Rheingold, A. R., Das, P. & Crabtree, R. H. (1995). *Inorg. Chem.* 34, 3474–3476.
- Yıldırım, S. Ö., Akkurt, M., Safari, N., Abedi, A., Amani, V. & McKee, V. (2009*a*). *Acta Cryst.* E**65**, m479–m480.
- Yıldırım, S. Ö., Akkurt, M., Safari, N., Amani, V. & McKee, V. (2009b). Acta Cryst. E65, m491–m492.
- Zhang, X.-P., Yang, G. & Ng, S. W. (2006). Acta Cryst. E62, m2018-m2020.

supplementary materials

Acta Cryst. (2012). E68, m981 [doi:10.1107/S160053681202853X]

6,6'-Dimethyl-2,2'-bipyridin-1-ium tetrachloridoaurate(III)

Marzieh Zare Dehnavi and Anita Abedi

Comment

In the recent years, we reported the synthesis and crystal structures of two proton transfer complexes (Abedi *et al.*, 2008; Kalateh *et al.*, 2008). Several proton transfer systems using HAuCl₄ as proton acceptor molecule, such as [EMI][AuCl₄], (II), [BMI]₂[AuCl₄].2H₂O, (III), (Hasan *et al.*, 1999), [H₂bipy][AuCl₄]Cl, (IV), (Zhang *et al.*, 2006), [H₇O₃][15-crown-5] [AuCl₄], (V), [H₅O₂][benzo-15-crown-5]₂[AuCl₄], (VI), (Johnson & Steed, 1998), [H₅O₂]₂[12-crown-4]₂[AuCl₄]₂, (VII), [H₃O][18-crown-6][AuCl₄], (VIII), [H₃O][4-nitrobenzo-18-crown-6][AuCl₄], (IX), (Calleja *et al.*, 2001), [Ph₂py.H] [AuCl₄], (X), (Yap *et al.*, 1995), [H₂DA18C6][AuCl₄], (XI), (Hojjat Kashani *et al.*, 2008), [Me₂Ph₂phen.H][AuCl₄], (XII), (Yıldırım *et al.*, 2009*a*), [pz(py)₂.H][AuCl₄], (XIII), (Yıldırım *et al.*, 2009*b*), [Phpy.H][AuCl₄], (XIV), (Amani *et al.*, 2010), [Dafonium][AuCl₄].[dafone], (XV), (Safari *et al.*, 2009), [tppzH₂][AuCl₄]₂, (XVI), (Abedi *et al.*, 2011) and [TBA]₂[AuCl₄][Cl], (XVII), (Fazaeli *et al.*, 2010) (EMI = 1-ethyl-3-methylimidazolium, BMI = 1-butyl-3-methylimidazolium, H₂bipy = 2,2'-bipyridinium, Ph₂py.H = 2,6-diphenylpyridinium, H₂DA18C6 = 1,10-diazonia-18-crown-6, Me₂Ph₂phen.H = 2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolin-1-ium, pz(py)₂.H = 2-[3-(2-pyridyl)pyrazin-2yl]pyridinium, Phpy.H = 3-phenylpyridinium, Dafonium = 9-oxo-4,5-diazafluoren-4-ium, dafone = 4,5-diazafluoren-9one, tppzH₂ = 2,5-bis(pyridinium-2-yl)-3,6-bis(2-pyridyl)pyrazine and TBA = tribenzylammonium) have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

In the anion of the title compound (Fig. 1), the Au^{III} atom has a square-planar coordination. The Au—Cl bond lengths and angles are within normal range (XII–XVII). In the crystal, intermolecular N—H···Cl and C—H···Cl hydrogen bonds (Table 1) and π – π contacts between the pyridine rings, Cg1··· $Cg2^i$ [Cg1 and Cg2 are the centroids of the rings N1/C1–C5 and N2/C7–C11, respectively. Symmetry code: (i) 2-*x*, -*y*, -*z*], with a centroid–centroid distance of 3.5419 (19) Å, are effective in the stabilization of the crystal structure, resulting in the formation of a supramolecular structure.

Experimental

For the preparation of the title compound, a solution of 6,6'-dimethyl-2,2'-bipyridine (0.21 g, 1.11 mmol) in methanol (10 ml) was added to a solution of HAuCl₄.3H₂O, (0.58 g, 1.11 mmol) in acetonitrile (10 ml) and the resulting yellow solution was stirred for 15 min at 313 K. This solution was left to evaporate slowly at room temperature. After one week, yellow prismatic crystals of the title compound were isolated (yield: 0.46 g, 79.1%; m. p. 453 K).

Refinement

H atom of NH group was found in a difference Fourier map and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(N)$. H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å and with $U_{iso}(H) = 1.2(1.5$ for methyl) $U_{eq}(C)$.

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008) and Mercury (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Crystal packing diagram for the title compound. Hydrogen bonds are shown as dashed lines.

6,6'-Dimethyl-2,2'-bipyridin-1-ium tetrachloridoaurate(III)

Crystal data	
$(C_{12}H_{13}N_2)[AuCl_4]$	F(000) = 984
$M_r = 524.01$	$D_{\rm x} = 2.238 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 1542 reflections
a = 10.8942 (9) Å	$\theta = 3.0 - 30.0^{\circ}$
b = 11.6784 (10) Å	$\mu = 10.13 \text{ mm}^{-1}$
c = 12.2866 (11) Å	T = 100 K
$\beta = 95.772 \ (5)^{\circ}$	Prism, yellow
V = 1555.3 (2) Å ³	$0.20 \times 0.15 \times 0.15$ mm
Z = 4	

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001) $T_{min} = 0.182, T_{max} = 0.227$ Refinement	12293 measured reflections 4101 independent reflections 3699 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 29.0^{\circ}, \theta_{min} = 2.4^{\circ}$ $h = -14 \rightarrow 14$ $k = -15 \rightarrow 15$ $l = -16 \rightarrow 16$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.049$ S = 1.00 4101 reflections 174 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0228P)^2 + 0.3281P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.83$ e Å ⁻³ $\Delta\rho_{min} = -1.15$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Au1	0.910926 (11)	0.846230 (10)	0.536181 (9)	0.00895 (4)	
C11	1.05716 (8)	0.80777 (8)	0.67847 (7)	0.01993 (18)	
C12	0.76133 (7)	0.82538 (7)	0.65184 (6)	0.01523 (16)	
C13	0.76425 (7)	0.88766 (7)	0.39541 (6)	0.01501 (16)	
Cl4	1.05950 (7)	0.86081 (7)	0.41815 (7)	0.01552 (16)	
N1	0.7935 (2)	0.0942 (2)	0.0534 (2)	0.0096 (5)	
N2	0.9773 (2)	0.2313 (2)	0.0264 (2)	0.0102 (5)	
H2N	0.9224	0.2323	0.0676	0.012*	
C1	0.8500 (3)	0.0735 (3)	-0.0370 (2)	0.0089 (6)	
C2	0.6953 (3)	0.0310 (3)	0.0722 (2)	0.0107 (6)	
C3	0.6523 (3)	-0.0561 (3)	0.0007 (3)	0.0136 (6)	
H3A	0.5832	-0.1010	0.0158	0.016*	
C4	0.7107 (3)	-0.0771 (3)	-0.0928 (3)	0.0154 (7)	
H4A	0.6818	-0.1361	-0.1422	0.018*	
C5	0.8112 (3)	-0.0112 (3)	-0.1130 (3)	0.0131 (6)	
H5A	0.8526	-0.0231	-0.1766	0.016*	
C6	0.6349 (3)	0.0588 (3)	0.1736 (3)	0.0146 (7)	

H6A	0.6978	0.0635	0.2363	0.022*	
H6B	0.5754	-0.0013	0.1867	0.022*	
H6C	0.5920	0.1325	0.1640	0.022*	
C7	0.9564 (3)	0.1483 (3)	-0.0502 (3)	0.0098 (6)	
C8	1.0677 (3)	0.3099 (3)	0.0276 (3)	0.0129 (6)	
С9	1.1446 (3)	0.3059 (3)	-0.0547 (3)	0.0144 (7)	
H9A	1.2088	0.3605	-0.0571	0.017*	
C10	1.1274 (3)	0.2212 (3)	-0.1343 (3)	0.0148 (7)	
H10A	1.1808	0.2183	-0.1908	0.018*	
C11	1.0340 (3)	0.1407 (3)	-0.1328 (3)	0.0124 (6)	
H11A	1.0234	0.0822	-0.1867	0.015*	
C12	1.0788 (3)	0.3951 (3)	0.1189 (3)	0.0185 (7)	
H12A	1.1431	0.4510	0.1067	0.028*	
H12B	1.1007	0.3555	0.1885	0.028*	
H12C	0.9999	0.4348	0.1215	0.028*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	<i>U</i> ²³
A.1.1	0.00970.(6)	0.00822 (7)	0.00884 (6)	0.00079 (4)	0.00044 (4)	-0.00109 (4)
Cll	0.00970(0)	0.00822(7)	0.00304(0)	0.00079(4)	-0.0011(3)	0.00109(4)
CID	0.0138(4)	0.0333(3)	0.0120(4)	0.0013(4)	0.0011(3)	0.0048(3)
CIZ	0.0142 (4)	0.0191 (4)	0.0129 (3)	-0.0038 (3)	0.0041 (3)	-0.0045 (3)
Cl3	0.0141 (4)	0.0159 (4)	0.0143 (3)	0.0012 (3)	-0.0021 (3)	0.0022 (3)
Cl4	0.0134 (4)	0.0201 (4)	0.0136 (4)	0.0027 (3)	0.0039(3)	0.0017 (3)
N1	0.0119 (13)	0.0076 (13)	0.0093 (12)	0.0009 (10)	0.0004 (10)	0.0012 (10)
N2	0.0088 (12)	0.0109 (13)	0.0113 (12)	-0.0010 (10)	0.0022 (10)	-0.0012 (10)
C1	0.0084 (14)	0.0084 (14)	0.0098 (13)	0.0040 (11)	0.0010 (11)	0.0008 (11)
C2	0.0134 (15)	0.0090 (15)	0.0096 (13)	0.0033 (12)	0.0002 (11)	0.0027 (12)
C3	0.0116 (15)	0.0122 (16)	0.0167 (15)	-0.0024 (13)	-0.0002 (12)	0.0004 (13)
C4	0.0167 (16)	0.0137 (16)	0.0153 (15)	-0.0034 (13)	-0.0009 (13)	-0.0062 (13)
C5	0.0175 (16)	0.0119 (16)	0.0099 (14)	0.0000 (13)	0.0022 (12)	-0.0024 (12)
C6	0.0161 (16)	0.0156 (17)	0.0125 (15)	-0.0028 (13)	0.0036 (12)	0.0015 (13)
C7	0.0099 (14)	0.0092 (15)	0.0099 (14)	0.0004 (12)	-0.0013 (11)	0.0001 (12)
C8	0.0138 (15)	0.0088 (15)	0.0157 (15)	-0.0023 (13)	-0.0009 (12)	0.0009 (12)
C9	0.0104 (15)	0.0160 (17)	0.0167 (16)	-0.0015 (13)	0.0004 (13)	0.0040 (13)
C10	0.0125 (15)	0.0185 (17)	0.0137 (15)	0.0027 (13)	0.0027 (12)	0.0033 (13)
C11	0.0143 (15)	0.0129 (16)	0.0098 (14)	0.0010 (13)	-0.0006 (12)	-0.0008 (12)
C12	0.0186 (17)	0.0157 (17)	0.0215 (17)	-0.0050 (14)	0.0032 (14)	-0.0072 (14)

Geometric parameters (Å, °)

Au1—Cl2	2.2804 (8)	C4—H4A	0.9500	
Au1—Cl3	2.2854 (8)	C5—H5A	0.9500	
Au1—Cl4	2.2856 (8)	C6—H6A	0.9800	
Au1—Cl1	2.2882 (8)	C6—H6B	0.9800	
N1—C2	1.339 (4)	C6—H6C	0.9800	
N1-C1	1.345 (4)	C7—C11	1.388 (5)	
N2—C8	1.345 (4)	C8—C9	1.378 (5)	
N2—C7	1.353 (4)	C8—C12	1.496 (5)	
N2—H2N	0.8221	C9—C10	1.390 (5)	

C1—C5	1.396 (4)	С9—Н9А	0.9500
C1—C7	1.474 (4)	C10—C11	1.387 (5)
C2—C3	1.395 (4)	C10—H10A	0.9500
C2—C6	1.502 (4)	C11—H11A	0.9500
C3—C4	1.390 (5)	C12—H12A	0.9800
С3—НЗА	0.9500	C12—H12B	0.9800
C4—C5	1.382 (5)	C12—H12C	0.9800
Cl2—Au1—Cl3	90.29 (3)	C2—C6—H6B	109.5
Cl2—Au1—Cl4	178.02 (3)	H6A—C6—H6B	109.5
Cl3—Au1—Cl4	89.42 (3)	С2—С6—Н6С	109.5
Cl2—Au1—Cl1	89.38 (3)	H6A—C6—H6C	109.5
Cl3—Au1—Cl1	179.00 (3)	H6B—C6—H6C	109.5
Cl4—Au1—Cl1	90.94 (3)	N2-C7-C11	118.8 (3)
C2—N1—C1	118.9 (3)	N2—C7—C1	115.3 (3)
C8—N2—C7	124.6 (3)	C11—C7—C1	125.8 (3)
C8—N2—H2N	124.1	N2—C8—C9	117.8 (3)
C7—N2—H2N	110.9	N2-C8-C12	117.8 (3)
N1—C1—C5	123.1 (3)	C9—C8—C12	124.3 (3)
N1—C1—C7	114.5 (3)	C8—C9—C10	119.5 (3)
C5—C1—C7	122.4 (3)	С8—С9—Н9А	120.3
N1—C2—C3	121.1 (3)	С10—С9—Н9А	120.3
N1—C2—C6	116.6 (3)	C11—C10—C9	121.3 (3)
C3—C2—C6	122.2 (3)	C11—C10—H10A	119.3
C4—C3—C2	119.8 (3)	C9—C10—H10A	119.3
C4—C3—H3A	120.1	C10—C11—C7	117.9 (3)
С2—С3—НЗА	120.1	C10-C11-H11A	121.1
C5—C4—C3	119.2 (3)	C7—C11—H11A	121.1
C5—C4—H4A	120.4	C8—C12—H12A	109.5
C3—C4—H4A	120.4	C8—C12—H12B	109.5
C4—C5—C1	117.8 (3)	H12A—C12—H12B	109.5
C4—C5—H5A	121.1	C8—C12—H12C	109.5
C1—C5—H5A	121.1	H12A—C12—H12C	109.5
С2—С6—Н6А	109.5	H12B—C12—H12C	109.5
C2—N1—C1—C5	0.0 (4)	N1-C1-C7-N2	-3.9 (4)
C2—N1—C1—C7	179.6 (3)	C5-C1-C7-N2	175.6 (3)
C1—N1—C2—C3	0.8 (4)	N1-C1-C7-C11	176.4 (3)
C1—N1—C2—C6	-179.2 (3)	C5-C1-C7-C11	-4.1 (5)
N1-C2-C3-C4	-1.0 (5)	C7—N2—C8—C9	0.0 (5)
C6—C2—C3—C4	179.1 (3)	C7—N2—C8—C12	-179.4 (3)
C2—C3—C4—C5	0.3 (5)	N2-C8-C9-C10	-0.8 (5)
C3—C4—C5—C1	0.6 (5)	C12—C8—C9—C10	178.6 (3)
N1—C1—C5—C4	-0.7 (5)	C8—C9—C10—C11	0.3 (5)
C7—C1—C5—C4	179.7 (3)	C9—C10—C11—C7	1.0 (5)
C8—N2—C7—C11	1.3 (5)	N2-C7-C11-C10	-1.8 (4)
C8—N2—C7—C1	-178.4 (3)	C1—C7—C11—C10	177.9 (3)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2 <i>N</i> ····Cl3 ⁱ	0.82	2.80	3.419 (2)	134
C4—H4A····Cl2 ⁱⁱ	0.95	2.79	3.434 (4)	126

Symmetry codes: (i) -*x*+3/2, *y*-1/2, -*z*+1/2; (ii) *x*, *y*-1, *z*-1.